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COMMENT
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Abstract. We make a comparative study of two schemes that predict the ground states of a
quantum dot with parabolic confinement in a strong magnetic field. One method is based on the
composite fermion (CF) approach, and the other was recently proposed by Dharma-wardana.
The prediction of these two schemes differ in general, and we compare the results of both
methods against exact diagonalization calculations.

Dharma-wardana [1] has recently constructed a scheme for identifying the quantum numbers
of the stable ground states of a quantum dot. It obtains the previously known ground state
quantum numbers for five and six electrons in a parabolic quantum dot. For a more rigorous
test, we carry out numerical calculations for bigger systems, and find that Dharma-wardana’s
prescription is not able to account for some of the stable ground states, and at the same
time also predicts states which are not stable. In contrast, the composite fermion picture
continues to provide a reasonable description.

We consider here the usual model in whichN two-dimensional electrons move in
a parabolic confining potential in the presence of a strong magnetic field. The angular
momentumL is a good quantum number in this geometry, and will be used to label the
states. In the limit when the confinement energy is small compared to the cyclotron energy,
the eigenenergies separate into two parts, the confinement energy and the interaction energy.
The confinement energy is explicitly known as a function ofL. Therefore, it is sufficient to
consider only the interaction energy, which, apart from a renormalized length scale, happens
to be the same as the interaction energy of electrons in the absence of confinement. We will
only consider the interaction energy below. The single-particle eigenstates and the Coulomb
matrix elements have been discussed in detail in the past and will not be repeated here; the
interested reader is referred to the literature [2–6].

We start with a summary of the results of the two schemes. Let us define

Lmin = 1
2N(N − 1) (1)

which is the total angular momentum of the lowest filled Landau level (LL) state. Dharma-
wardana’s prescription is as follows. For any givenL > Lmin, considerL′ = L − kLmin,
wherek, either an odd or an even integer, is chosen appropriately to make 0< L′ 6 Lmin.
Then define

ν ′−1 = L′/Lmin ≡ p/q. (2)

(Dharma-wardana denotes this byν ′, but we useν ′−1, since it is actually theinverseof
the filling factor.) It is claimed in [1] that a stable ground state is obtained wheneverp/q
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is a rational withq odd. This picture is motivated by the idea [7] in which each electron
is decomposed into fictitious particles, and a stable ground state is obtained when each
species of the fictitious particles occupies a stable state. However, there are two conceptual
difficulties with the prescription of [1]. (i) Allowing odd integer values fork is tantamount
to assuming bosonic statistics for electrons (since each electron is decomposed into an even
number of number of fictitious particles, each assumed to be a fermion). In fact, this leads
to an incompressible state atν = 1/2 [1]. (ii) It would seem to us more natural to demand
that p is odd, rather thanq. In any case, the scheme of [1] makes precise predictions for
bigger systems that are testable.

The CF scheme [8] relates the system of interacting electrons at angular momentumL

to that of non-interacting composite fermions at angular momentumL∗, given by

L∗ = L − 2Lmin. (3)

In particular, the ground state energy of interacting electrons in the rangeLmin < L < 3Lmin

resembles the ground state energy of non-interacting fermions in the range−Lmin < L∗ <

Lmin [9–11]. The former depends on the Coulomb interaction between electrons, the
evaluation of which requires a numerical diagonalization of the Hamiltonian. The latter,
proportional to the kinetic energy of fermions, is determined rather straightforwardly by
asking what arrangement of fermions in different LL will give the lowest kinetic energy for
a givenL. The LL spacing is treated as a parameter in the theory, for which the empirical
formula given in [10] will be used below.

We determine the lowest energy in a givenL subspace from the exact diagonalization
calculations in a range ofL for seven electrons in a quantum dot. The interaction energy of
the state is shown in figure 1. The dimension of the largest matrix diagonalized was 3539
for L = 56. The actual overall ground state of the quantum dot is to be determined only
after adding to the interaction energy the confinement energy,which is a linear function of
L. Clearly, only a state with a downward cusp (DC) in figure 1 has a chance of becoming
the ground state, as various parameters (confinement strength or the magnetic field) are
varied. However, not all such states actually become ground states; a cusp which liesabove
(or on) the line joining any two equidistant cusps on either side will not become the ground
state for any choice of parameters. The possible ground states in theL range considered in
our study are seen to be atL = 28, 33, 39, 45, 51 and 56. These should be compared to
L = 28, 35, 42, 49, 51 and 54 predicted by Dharma-wardana in [1].

Figure 1 also shows the composite fermion prediction, which evidently captures the
major features of the exact results. We determine the possible ground states as before, and
obtainL∗ = −14, −9, −3, 3, 9 and 14, predicting ground states for the interacting electron
system atL = L∗ +42 = 28, 33, 39, 45, 51 and 56, in impressive agreement with the exact
result! (Note that the downward cusps atL∗ = −6, −1, 1 and 6 lieon the line joining two
equidistant cusps on either side, and hence do not become ground states.)

In fact, the CF scheme works here better than one has the right to expect, given that
the above model makes the assumption of treating the composite fermions as strictly non-
interacting. The interaction between the composite fermions is much weaker than that
between electrons, since a good part of the interelectron interaction has been used up in
the formation of composite fermions. However, neglect of the residual inter-CF interaction
is only a good zeroth-order model; it gets the principal features correctly, but will miss
secondary structure attributable to the residual interaction between the composite fermions.
For example, it is entirely possible that a state which has no cusp in the non-interacting-CF
model will develop a downward cusp when the interaction between the composite fermions
is switched on. However, the secondary structure is expected to be relatively weak. This is
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Figure 1. The lower curve shows the exact diagonalization results for the interaction energy of
N = 7 interacting electrons as a function of the total angular momentumL (lower axis). The
energy is given in units ofe2/εa, whereε is the dielectric constant of the background material
anda is the renormalized magnetic length (see [6, 10, 11] for details). The upper curve shows
the kinetic energy of non-interacting fermions as a function ofL∗ (upper axis). The effective
LL spacing for the composite fermions has been determined from the expression given in [10].
The CF curve has been vertically offset for clarity. The possible ground states obtained in the
exact diagonalization study are indicated by filled triangles. Filled circles show the possible
ground states predicted by the CF theory; Dharma-wardana’s predictions [1] are indicated by
upward arrows.

indeed the case. For example, for six electrons, the numerical calculations obtain a ground
state atL = 40, not predicted in the non-interacting-CF picture, but this ground state appears
only in an extremely narrow range of parameters [5] and has a very weak cusp associated
with it. Another example is provided in the ten-electron results of figure 2, where the state
at L = 61 becomes the ground state in a (small) range of parameters, not predicted by the
non-interacting-CF model.

What is the residual interaction between the composite fermions? The answer is likely
to be rather complex. The CF scheme, however, does allow the computation of the weaker
structure as well, albeit only with substantially greater effort. It would involve constructing
the CF basis at eachL, obtained by starting from the basis states of non-interacting electrons
at L∗ = L − 2Lmin, multiplying them by an appropriate Jastrow factor, and then projecting
the resulting state on to the lowest LL. The CF theory asserts that a good description of the
low energy states is provided by diagonalizing the Coulomb Hamiltonian in this basis. For
most DC states, the CF wavefunction is unique and no diagonalization is necessary. The
CF wavefunction has been studied in a few such cases and found to be quite accurate [12],
implying that the CF scheme will predict the energy quite reliably. For otherL, there are
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Figure 2. Same as in figure 1 forN = 10.

several CF states, but the CF basis is still tremendously small compared to the full lowest
LL basis. While the smaller basis size helps, it is in practice rather difficult to carry out the
projection on to the lowest Landau level. It should be emphasized, though, that a number
of simplifying approximations have already been made in writing the initial idealized model
(parabolic confinement, lack of LL mixing, and so on), a relaxation of which, required for
comparison with the actual experiments, will surely alter the minor details of the solution.
It is hoped that the principal structure, described well by the simple non-interacting-CF
model, will survive and be observed in quantum dots.
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